The transfer matrices of the self-similar fractal potentials on the Cantor set

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2008 J. Phys. A: Math. Theor. 41379801
(http://iopscience.iop.org/1751-8121/41/37/379801)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.150
The article was downloaded on 03/06/2010 at 07:11

Please note that terms and conditions apply.

Corrigendum

The transfer matrices of the self-similar fractal potentials on the Cantor set N L Chuprikov 2000 J. Phys. A: Math. Gen. 33 4293-4308

There is an error in equation (1). The correct form of (1) reads
$V_{0}(x)=V_{0}(\alpha x)+V_{0}\left[\alpha\left(x-x_{0}\right)\right]$.
This change has an effect on all statements concerning the scale invariance of the SSFP. Now the first relation in appendix A must be replaced by
$V_{n+1}(x)=V_{n}(\alpha x)$.
Relation (10) can be extended onto all levels of the SSFP, for any value of n
$\mathbf{Z}_{n+1}(k)=\mathbf{Z}_{n}(\alpha k)$.
In this case, for any level n
$\mathbf{Z}_{n}\left(\phi_{n}\right)=\mathbf{Z}_{n}\left(\alpha \phi_{n}\right) \mathbf{D}^{-1}\left(\phi_{n}, \gamma\right) \mathbf{Z}_{n}\left(\alpha \phi_{n}\right)$,
where $\phi_{n}=\phi / \alpha^{n}$. This functional equation is the same for all levels of the SSFP. Hence it is sufficient to find the transfer matrix $\mathbf{Z}_{0}(\phi)$ from this equation at $n=0$ (or, equation (16) in the original paper). Then the transfer matrices for the nth level can be found with the help of the relations $\mathbf{Z}_{n}\left(\phi_{n}\right)=\mathbf{Z}_{0}(\phi)=\mathbf{Z}_{0}\left(\alpha^{n} \phi_{n}\right)$.

There are also two minor errors:

1) the expression $\sin \left[2\left(y_{n+1}(k)-\gamma k d_{n}\right)\right] \geqslant 0$, after relation (15), should be replaced by $\sin \left[2 B\left(k, y_{n}(k)\right)\right] \geqslant 0$;
2) the renewed sentence to precede relation (B2), in appendix B, reads 'Now let us solve this equation with respect to η, choosing the root which behaves correctly at $\widetilde{R}=1 \ldots$, (rather than $\widetilde{R}=0$).
